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Inequalities in Entanglement Percolation
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We present proofs of two results concerning entanglement in three-dimensional
bond percolation. Firstly, the critical probability for entanglement with free
boundary conditions is strictly less than the critical probability for connectivity
percolation. (The proof presented here is a detailed justification of the ideas
sketched in Aizenman and Grimmett.) Secondly, under the hypothesis that the
critical probabilities for entanglement with free and wired boundary conditions
are different, for p between the two critical probabilities, the size of the
entangled cluster at the origin with free boundary conditions does not have
exponentially decaying tails.
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1. INTRODUCTION

In the bond percolation model, edges of the three-dimensional cubic lattice
are declared independently open with probability p, and closed with prob-
ability 1−p. Roughly speaking, a graph in three-dimensional space is said
to be entangled if it cannot be ‘‘pulled apart’’ when its edges are regarded
as physical connections made of elastic. Entanglement percolation is con-
cerned with the study of open entangled graphs in the percolation model.
Entanglement in percolation appears to have been first studied in

ref. 2, using partly non-rigorous methods. In that paper, an ‘‘entanglement
critical probability’’ pe for the existence of infinite open entangled graphs is
investigated; the numerical estimate pc−pe % 1.8×10−7 is derived, although
no formal definition is given for an entangled graph. (Here pc is the usual
percolation critical probability for the existence of infinite open connected



graphs). In ref. 1 the authors describe how their general method can be
used to obtain the strict inequality pe < pc, but again no definition of pe is
given. A rigorous theory of entanglement was developed later in ref. 3. It
turns out that significant topological issues are involved, and in particular
there are several non-equivalent natural definitions of entanglement for
infinite graphs. Two such definitions correspond in a natural way with
‘‘free’’ and ‘‘wired’’ boundary conditions respectively, and these give rise to
two potentially different critical probabilities p0e and p

1
e .

The following inequalities hold:

0 < p1e [ p
0
e < pc < 1.

The inequality 0 < p1e is proved in ref. 4. The inequality p
0
e [ pc is a tri-

viality. In this article we shall present a proof of the strict inequality
p0e < pc, based on the sketch given in ref. 1. The inequality p

1
e [ p

0
e is a tri-

viality. It is a very interesting unsolved problem to decide whether p1e=p
0
e .

(The analogous question for rigidity was answered affirmatively in ref. 5.)
We shall prove the following result, which makes it plausible that the above
equality holds. Suppose on the contrary that p1e < p

0
e , and let p

1
e < p < p

0
e .

Then under the definition of entanglement corresponding to p0e , the size of
the entangled cluster at the origin has tails which decay more slowly than
exponentially. This would be at odds with the natural conjecture that for
all p < p0e , such tails decay exponentially (as in connectivity percolation).
Additional material on entanglement percolation appears in refs. 6–7.

2. NOTATION AND RESULTS

We start with some definitions. The three-dimensional cubic lattice is
the graph with vertex set Z3 and edge set

L={{x, y} ı Z3: ||x−y||=1}

where || · − · || denotes Euclidean distance. The origin is the vertex
O=(0, 0, 0) ¥ Z3. In the bond percolation model with parameter p, each
edge in L is declared open with probability p, and closed otherwise, inde-
pendently for different edges. More formally, we consider the product
probability measure Pp with parameter p on the probability space {0, 1}L,
and we write Ep for the corresponding expectation operator. An element w
of the probability space is called a configuration, and an edge e ¥ L is said
to be open if w(e)=1 and closed if w(e)=0. It is convenient to define a
graph to be a subset of L. We write W=W(w) for the random graph of all
open edges.
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Percolation theory is concerned with the existence of infinite connected
components. We define

h(p)=Pp(W has an infinite connected component containing O)

and

pc=sup{p: h(p)=0}.

For more information on percolation see ref. 8.
The following definitions relating to entanglement are taken from

ref. 3. For an edge e={x, y} ¥ L we denote by OeP the closed line segment

OeP={lx+(1−l) y: l ¥ [0, 1]} ı R3.

For a graph G we write [G]=1e ¥ G OeP ı R3. A sphere is a piecewise-
linear subset of R3 which is homeomorphic to a topological 2-sphere. If
S is a sphere, R30S has two path-components, one bounded and one
unbounded. We call these the inside and the outside of S respectively. We
say that a sphere S separates a set R ı R3 if R intersects both the inside and
the outside of S but not S itself. We say that a finite graph F is entangled if
it is separated by no sphere, and we define

F={F ı L: F is finite and entangled}.

IfA is a set of graphs, by anA-graph we mean a graph lying inA, and by
an A-subgraph of a graph we mean a subgraph which is an A-graph. An
A-component of a graph G is a maximalA-subgraph of G. We define

E0={G ı L: every finite subgraph of G
is contained in someF-subgraph of G}

and

E1={G ı L: G is separated by no sphere}.

As remarked in refs. 3 and 7, both E0 and E1 are natural candidates for a
definition of the set of all ‘‘entangled’’ graphs, and they correspond in a
natural way to ‘‘free’’ and ‘‘wired’’ boundary conditions respectively. We
have that E0 ı E1, but the two sets are not equal. See refs. 3 and 7 for more
details.
For i=0, 1 we define

g i(p)=Pp(W has an infinite E i-component containing O)
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and

p ie=sup{p: g
i(p)=0}.

It is immediate that

p1e [ p
0
e [ pc.

Theorem 1. We have the strict inequality

p0e < pc.

Our proof of Theorem 1 is based on the argument in ref. 1, but there
are some additional topological details.
Let E0 be the E0-component of W containing O (that this is well-

defined is shown in ref. 3). For a graph G we denote by |G| the number of
edges in G.

Theorem 2. Assume that p1e < p
0
e . Then for all p ¥ (p

1
e , p

0
e) there

exists b=b(p) <. such that

Pp(|E0| \ n) \ exp(−bn2/3)

for all n \ 1.

Theorem 2 implies in particular that, under the hypothesis p1e < p
0
e , the

distribution of |E0| cannot have exponentially decaying tails for all p < p0e .
This would be in contrast with the situation for connectivity percolation
(see Theorem 6.75 in ref. 8). Our proof of Theorem 2 is based on the
approach in the proof of Theorem 8.61 of ref. 8.

3. PROOFS

Proof of Theorem 1. We shall make use of an enhancement
suggested in ref. 1 (see also ref. 8, p. 65). Let H be the subgraph of L con-
sisting of all edges having both vertices in the box [0, 2]2×[0, 3]. Let L be
the subgraph of H consisting of the thick solid edges in Fig. 1 (the outline
of the box is also illustrated). Let f be the dashed edge in Fig. 1. We define
an enhancement of percolation configurations as follows. Given a configu-
ration w and the corresponding graphW(w) we define

WŒ=W 2 0
x ¥ E(W)

(f+x),
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Fig. 1. The graph governing the enhancement.

where

E(W)={x ¥ Z3: W 5 (H+x)=L+x}.

Thus, WŒ is obtained from W in the following way. Wherever we see a
translated copy of L inW, we add the edge corresponding to f. We refer to
these added edges as fasteners. The idea is that the enhancement fromW to
WŒ affects the connectivity properties of the graph but has no effect on its
entanglement properties.
It follows from the general results in that ref. 1 that there exists an

interval [p1, p2], where p1 < p2, such that for p ¥ [p1, p2] we have

Pp(W has an infinite connected component)=0 (1)

but

Pp(WŒ has an infinite connected component)=1. (2)

Firstly, note that (1) implies that p2 [ pc. Secondly, we claim that if WŒ has
an infinite connected component, then W has an infinite E0-component.
Using this fact, (2) implies that p0e [ p1, and the required inequality then
follows.
To prove the above claim, suppose that AŒ is an infinite connected

component of WŒ. We shall adopt the following convention: graphs repre-
sented by primed letters are subgraphs of WŒ, and graphs represented by
unprimed letters are subgraphs of W. Let A=AŒ 5W; A is AŒ with all fas-
teners removed. Clearly A is infinite. We shall show that A ¥ E0. Let B be a
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finite subgraph of A. We must show that B is a subgraph of some
F-subgraph of A. Since B ı AŒ, let CŒ be a finite connected subgraph of AŒ
which has B as a subgraph. We now let DŒ be the graph satisfying
CŒ ı DŒ ı AŒ obtained by enlarging CŒ so as to contain only complete
copies of L 2 {f}; more formally, we define DŒ=CŒ 2 1x [(L 2 {f})+x]
where the union is over all x ¥ E(W) satisfying CŒ 5 ((L 2 {f})+x) ]”.
Note that DŒ is finite and connected. Let D=DŒ 5W; D is DŒ with all fas-
teners removed; and note that D ı A. We shall show that D ¥F, which
will complete the proof.
Suppose that, contrary to the above statement, [D] is separated by a

sphere S. Each vertex in D lies in either the inside or the outside of S, and
no edge of D can join a vertex in the inside to a vertex in the outside. Since
DŒ is connected, it is easy to see that there exists some fastener in DŒ0D
which joins a vertex in the inside of S to a vertex in the outside of S (con-
sider adding the fasteners one at a time). Hence there exists some x ¥ Z3

such that L+x ¥ D and such that S separates [L+x]. However, this is
impossible: standard topological methods (using linking number, see ref. 9)
may be used to prove that no sphere separates [L]. L

Proof of Theorem 2. We shall prove that the conclusion of the
theorem holds for all p such that g1(p) > 0. Let g1(p) > 0. As noted in
refs. 3 and 6, W has almost surely exactly one infinite E1-component, and
we denote it I. Let z=z(p) be the probability that a fixed edge e lies in I;
by the FKG inequality z(p) \ pg1(p). For a positive integer m, let B(m) be
the graph consisting of all edges of L having both vertices in [−m, m]3, and
let “B(m) be the graph of all edges having both vertices in [−m, m]30
[−m+1, m−1]3. We write Im=I 5 B(m). We claim that

Pp(|Im | \
1
2z(p)|B(m)|) \

1
2z(p).

This is proved as follows. We have |Im | [ |B(m)|, and hence

Ep(|Im |) [ Pp(|Im | \
1
2z|B(m)|) |B(m)|+Pp(|Im | <

1
2z|B(m)|)

1
2z|B(m)|

[ Pp(|Im | \
1
2z|B(m)|) |B(m)|+

1
2z|B(m)|.

The claim now follows from the fact that Ep(|Im |)=z|B(m)|.
Now define the event

Zm={|Im | \
1
2z(p)|B(m)|} 5 {I contains O} 5 {“B(m) is open}.

Since each of the three events appearing in this definition is increasing, the
FKG inequality gives

Pp(Zm) \
1
2z(p) g

1(p) p |“B(m)|.
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Now, there exist positive constants a and b such that |B(m)| \ am3 and
|“B(m)| [ bm2. We claim that whenever Zm occurs, Im 2 “B(m) is an open
F-graph containing O. This claim implies the required result as follows. If
Zm occurs then we have E0 ` Im 2 “B(m), and so provided g1(p) > 0 the
above inequality yields

Pp(|E0| \ c(p) m3) \ exp(−d(p) m2)

where c(p) and d(p) are positive constants. The result follows on making a
suitable choice of m.
The above claim follows from a special case of an argument used in

the proof of Theorem 3.3 of ref. 3, with the topological boundary of the
box [−m, m]3 playing the role of the set ‘‘[U]’’ in the notation of ref. 3.
The idea is to show that if Im 2 “B(m) were separated by a sphere S, we
could modify it to obtain a sphere which separated Im 2 “B(m) but lay
entirely in [−m, m]3, giving a contradiction to the definition of Im. This is
done by repeatedly applying topological ‘‘surgery’’ to S so as to remove
each intersection of S with the boundary of [−m, m]3. For the details see
ref. 3. Similar arguments appear in ref. 4, and detailed justification of the
topological steps may be found in ref. 9. L
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